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SUMMARY

A modified conservation principles theory in one, then multi-dimensions, admits the prediction of an
optimally accurate algorithm construction for the unsteady incompressible Navier–Stokes (INS) equations.
Via a time Taylor series (TS) operation, followed by a pseudo-limit process, the theory generates a modified,
but still analytical, INS system parameterized by a set of coefficients constrained only by a convexity
requirement. A spatially discretized finite element implementation of a Galerkin weak statement on
this modified INS system, termed the ‘Taylor weak statement (TWS),’ generates a parameterized CFD
algorithm for analysis. TWS algorithm phase velocity and amplification factor error functions are derived
for linear and bilinear basis implementations assembled at the generic node. A subsequent TS expansion
in wave number space admits analytical identification of parameter set options affecting lowest order error
terms. The results of definitive verification- and validation-class computational experiments for a range
of published CFD algorithms belonging to the TWS class, reported herein, clearly confirm theoretical
prediction of the optimal TWS algorithm for INS thermal/fluid transport applications. Copyright q 2007
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The comparative performance assessment of Navier–Stokes (NS) CFD algorithms, derived via a
multitude of distinct theories, has occupied the imagination of analysts for decades. Fourier analysis

∗Correspondence to: A. J. Baker, CFD Laboratory, University of Tennessee, Knoxville, TN 37996, U.S.A.
†E-mail: ajbaker@utk.edu
‡Senior Engineer.
§Professor, Engineering Science.
¶Director.

Contract/grant sponsor: NSF; contract/grant number: DUE 0121669
Contract/grant sponsor: ARC Automotive, Inc.

Copyright q 2007 John Wiley & Sons, Ltd.



738 S. SAHU AND A. J. BAKER

is the preferred theoretical framework supporting this activity, as it admits analytical determination,
for linearizing assumptions, of phase velocity error and amplitude dissipation distributions across
the wave number spectrum characterizing resolution on a mesh of measure h.

Chronologically, Belytschko and Mullen [1] pioneered a generalized Fourier analyses approach
to assess consistent and lumped mass matrix forms on algorithm phase speed for linear and
quadratic finite element (FE) formulations. Shortly thereafter, Vichnevetsky and Bowles [2], also
Vichnevetsky [3], report the results for phase and group velocity distributions for hyperbolic
statement algorithms implemented using both finite difference (FD) and FE methods. Shakib and
Hughes [4] investigate the stability and accuracy of a space–time Galerkin Least Squares (GLS)
method applied to advection–diffusion problems. Comparative phase and amplitude error analysis
for FD schemes is reported by Morton and Mayers [5]. Christon [6] reports on FE mass matrix
dispersive characteristics for a second-order wave equation. Most recently, Christon et al. [7, 8]
develop a generalized Fourier analyses theory and a detailed procedure for estimation of error in
phase and group speeds, discrete diffusivity and artificial diffusivity for 1D and 2D advection–
diffusion problems.

The historical approach for generating a CFD algorithm has centred on forming spatially dis-
crete approximations to the derivatives in the NS system, termed a scheme in the literature. All
finite difference (FD) and finite volume (FV) CFD methods belong to this category. The alter-
native, purely analytical approach employs modern approximation theory, cf. Oden and Reddy
[9], involving definition of a set of trial functions to support an NS system approximate solution,
then forming a weak statement to render the approximation error (function) orthogonal to a de-
fined set of test functions, Oden and Demkowicz [10]. The trial and test function spaces need
only be sufficiently differentiable, hence square integrable, and the most common CFD algorithm
implementation defines discrete subset spaces, called (FE) trial space bases, hence employs a
domain meshing to implement the formulation. The available linear theory predicts the optimal
algorithm, i.e. that exhibiting the minimal error, accrues to the trial and test spaces containing
identical members, hence also their subsets, which generates a Galerkin weak statement (GWS)
algorithm.

History has confirmed that a GWS algorithm for models of and genuine NS systems can indeed
be optimally accurate as a function of completeness of the trial space bases. However, such an
algorithm is well known to suffer from a dispersive error mechanism at large, i.e. practical, Reynolds
number Re. This observation has led to derivation of a range of non-GWS CFD algorithms, each
implemented with a test function set, explicitly modified to yield improved performance. The
historical algorithms are due to Wahlbin [11], Dendy [12] and Raymond and Garder [13]. More
recent developments are reported by Donea, [14], termed Taylor–Galerkin (TG), the well exercised
Brooks–Hughes Streamline Upwind Petrov Galerkin (SUPG) formulation, [15], and GLS, cf.
Jiang [16].

These non-Galerkin CFD algorithms each result from an apparently quite distinct theoretical
foundation. As a first step in the search for an analytical formulation process, Donea interchanged
the traditional spatial–temporal discretization sequence, hence produced the time-explicit TG
algorithm. This operation produced a non-Galerkin appearing test function within a GWS. Baker
and Kim [17] generalized the theoretical approach, via an approximate limiting process, resulting
in an analytical restatement of the parent NS system, eligible for a genuine GWS construction
for implementation via any space–time discretization process. The key development contribution
was direct embedding of a coefficient set {�, �, �, �, �} in the continuum TS-modified NS system,
theoretically constrained only by a convexity requirement.
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Table I. TWS formulation categorization of independently derived CFD algorithms.

Algorithm name � � � � �

TWSh + �TS All Arbitrary Arbitrary Arbitrary Arbitrary
(Bubnov) Galerkin All 0 0 0 0
Donor cell FD 0 0 u/C 1/C2 0
Lax–Wendroff FD 0 0 sgn(u) 0 0
Taylor Galerkin (TG) 0 0 1 1 0
Crank–Nicolson TG 0.5 0 0.5 1 0
Euler Char. Galerkin 0 0 1 0 1
Swansea TG 0 0 1 0 0
Wahlbin 0 sgn(u) 2 sgn(u) 0 0
Dendy 0 h sgn(u) h sgn(u) 0 0
Raymond–Garder 0.5 2v0 sgn(u)/C 2v0 sgn(u)/C 0 0
Hughes SUPG (steady) — 0 sgn(u) 0 0
Euler Petrov Galerkin 0 0 0 (1 − �) 0
CN Petrov Galerkin 0.5 sgn(u) v sgn(u) −v/2 0
Warming–Beam FD 0 0 1 0 −3(1 − C)
van Leer MUSCL 1 0 sgn(u) 0 −3
Galerkin least squares All 2� 2� 0 0

Note: sgn(u) is the sign of u, v0 = 1/
√
15, C � v � 1, C is the Courant number.

A GWS written on the TS-modified NS system, when implemented using the FE linear basis
in 1D, and an implicit time discretization, led to the Taylor weak statement (TWS) modified
hyperbolic conservation law algorithm, [17]. Being a genuine Galerkin formulation, the error
associated with any approximate solution to the TS-modified conservation principle is rendered
orthogonal to the approximation trial space, hence should exhibit optimal accuracy. Of theoretical
significance, it was also observed that the TWS formulation admitted recovery of well over a dozen
independently derived CFD algorithms, upon interpretation of appropriate definitions for the TWS
parameter set {�, �, �, �, �}. Table I summarizes this published observation for the 1D, unsteady
scalar advection–diffusion problem.

The extension of the TWS theory to semi-discrete implementation with FE quadratic and cubic
bases in 1D, as well as spectral error distribution comparisons to the FD and FV algorithm
constructions popular with incompressible Navier–Stokes (INS) CFD codes, is reported by Chaffin
and Baker [18]. The key results generated were: (1) identification of ‘optimal-�’ TWS formulations
for the pure advection problem, with � dependent on FE trial space basis completeness degree
b; and (2) spectral characterization of the dissipative nature of the TWS theory � term. Reported
results confirmed the optimal-� TWS algorithm matched the pure GWS algorithm performance, in
wave number space, for implementation using one-degree lower b FE bases, resulting in significant
economy based on matrix band width of these formulations.

Continuing with this study, Kolesnikov and Baker [19] derive the TWS modified conservation
principle CFD algorithm for the steady INS system. A premier contribution was theory generation,
in the continuum and in multi-dimensions, of the identical velocity tensor product coefficient
associated with the � term in the unsteady TWS theory. The steady INS theory removed the
arbitrariness of the unsteady TWS � coefficient, analytically replacing it with h2Re/12 in the limit
of large Reynolds number Re, for h a measure of the FE bilinear basis mesh in 2D and 3D.
Additionally, the steady theory predicted a TWS solution asymptotic convergence rate to be order
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Figure 1. Wave number vector and phase velocity in the Cartesian continuum.

h4, in an energy semi-norm, for a FE bilinear basis implementation. This matches the convergence
rate of a FE quadratic basis GWS implementation, and computational results for verification- and
benchmark-class INS problem statements fully verified these theoretical predictions.

The goal therefore is to complete the theoretical assessment of the published range of TWS-type
CFD algorithms, including extension to multi-dimensions. Recalling Table I, algorithms belonging
to the class but not yet characterized in the TWS context include SUPG, TG, GLS and the earlier
algorithms of the Raymond–Garder (RG), Wahlbin, and Dendy class. The newly developed class
of weak statement algorithms named ‘Discontinuous Galerkin (DG)’ methods, cf. Li [20] do not
readily fit the TWS analysis framework, as they require selection of a scheme for interface flux
evaluations, a key formulation ingredient of FV and/or flux splitting CFD methods.

Completing the goal requires generation of the class of TWS algorithm solutions in wave number
space. For a mesh of measure h supporting a space-discrete implementation, resolution hence
propagation of solution spectral content of scale order 2h is substantially (totally) compromised.
This results in the cascading of solution order 2h spectral content into longer wavelength spurious
oscillations termed dispersion error. Artificial (numerical) diffusion mechanisms can stabilize a
computation, but at the same time generate algorithm dissipation error. The phase velocity c is the
velocity of propagation of a solution component (called a ‘wave’) of velocity u in the direction of
the wave number vector j [21] Figure 1. Mathematically,

c= (u · j)j
�2

(1)

where � ≡ |j| is the wave number, i.e. the number of wave crests existing in the interval 2� in
the direction of the wave vector angle 	 [22]. Thereby, � = 2�/
, where 
 is the crest wavelength
and j is orthogonal to the wave crest. In 1D, the phase velocity (speed) is the scalar c, identical
with the imposed speed u. The group velocity Vg(j) is the velocity with which smooth waves
propagate energy in a dispersive medium. In 2D and rectangular Cartesian coordinates

Vg(j) = ∇��=

⎡⎢⎢⎣
��

��1
î

��

��2
ĵ

⎤⎥⎥⎦ (2)
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where � is cyclic frequency and �1 = � cos 	, thereby �2 = � sin 	, is the wave number resolution
in the x and y directions, respectively. In the continuum, group velocity is independent of j and
is equal to the imposed velocity.

For a spatially discrete algorithm implementation, the phase and group velocities differ from
their continuum values due to discretization-induced wave number dependence. Further, the group
velocity is not always aligned with the wave vector but instead has a propagation direction �
defined by

�= tan−1
(
Vg,y
Vg,x

)
= tan−1

(
��/��1
��/��2

)
(3)

Reverting to 1D, from (1)–(3)

Vg(�) = ��(�)

��
= �(c(�)�)

��
= c(�) + �

�(c(�))

��
(4)

hence only if phase speed c is independent of wave number � are the group and phase speeds equal.
Therefore, determination of the wave number dependence of phase speed, hence phase velocity in
one- and multi-dimension is the key theoretical assessment.

This paper presents complete theoretical characterization of the class of TWS CFD algorithms
for the INS system. Via Fourier analysis, the theory for the TWS arbitrary coefficient set {�, �, �, �}
becomes ultimately expressed as a Taylor series (TS) cast in non-dimensional wave number space.
The theory is completed in one and two space dimensions, hence extension to 3D inferred. The
optimal linear and bilinear FE basis TWS algorithms thus become identified in all dimensionalities,
for the restriction of uniform discretizations in rectangular cartesian coordinates.

Numerical results are reported for non-diffusive verification-class problem statements which
fully validate the theory. Additionally, in 2D, results quantify the loss of optimal TWS algorithm
accuracy when implemented on an unstructured mesh spanned by the linear natural coordinate
FE basis on triangles. Finally, GWS and optimal-� TWS algorithm solutions are compared, for a
genuine INS fluid-thermal 2D validation problem, providing solid quantification of the developed
theory accuracy.

2. MODIFIED CONSERVATION PRINCIPLES FORMULATION

2.1. Problem statement

The unsteady, INS conservation principles for mass, momentum and energy in non-dimensional
tensor index form are familiarly

DM: L(0) = �ui
�xi

= 0 (5)

DP: L(ui ) = �ui
�t

+ �
�x j

(
uiu j + P�i j − Re−1 �ui

�x j

)
+ Gr

Re2
�ĝi = 0 (6)

DE: L(�) = ��

�t
+ ui

��

�xi
− 1

RePr

�2�
�x2i

− s = 0 (7)
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742 S. SAHU AND A. J. BAKER

In (5)–(7), ui is the velocity vector, P = p/0 is the kinematic pressure for 0 the constant density,
� is the potential temperature and s is a heat source. The non-dimensional groups parameterizing
solutions to (5)–(7) are

Grashoff number: Gr= g��T L3

�2
(8)

Reynolds number: Re= UL

�
(9)

Prandtl number: Pr= 0�cp
k

(10)

where � is the thermal expansion coefficient associated with the Boussinesq buoyancy approxima-
tion, [23], � is kinematic viscosity, cp is the heat capacity at constant pressure and k is thermal
conductivity. The PDE system (6)–(10) constitutes an initial-value, elliptic boundary value (EBV)
problem statement, for finite Re, with solution process subject to the DM differential constraint (5).

2.2. Modified conservation principles parameterization

TWS formation, followed by the approximate limiting of the TS modified conservation principles
construction, is fully detailed in [17]. The resultant TS-modified INS statement for DP embeds
the arbitrary parameter set {�, �, �, �} as

Lm(ui ) =L(ui ) − �t

2

�
�x j

(
�u j

�ui
�t

+ �u juk
�ui
�xk

)

− �t2

6

�
�x j

[
�u juk

�
�xk

�ui
�t

+ �u juk
�

�xk

(
um

�ui
�xm

)]
+ O(�t3) = 0 (11)

where L(ui ) in (11) remains (6) in completeness. Non-linearities in (11) severely limit theoretical
analysis, which is not the case for scalar field transport, e.g. (7). The corresponding TS-modified
conservation principle for any scalar field q(x j , t) is

Lm(q) =L(q) − �t

2

�
�x j

(
�u j

�q
�t

+ �u juk
�q
�xk

)

− �t2

6

�
�x j

[
�u juk

�
�xk

�q
�t

+ �u juk
�

�xk

(
um

�q
�xm

)]
+ O(�t3) = 0 (12)

which is amenable to the exacting theoretical analysis detailed in the following.

3. THEORETICAL DEVELOPMENT

3.1. TWS algorithm formulation for INS

Via the classical weak statement process, Baker [24], any approximation solution qN to (11)
and (12) is defined as an inner product of a set of trial space functions ��(x) with a set of
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time-dependent expansion coefficients, specifically

q(x, t) ≈ qN (x, t) =
N∑
�

��(x)Q�(t) (13)

The associated approximation error is the function eN (x, t) ≡ q(x, t) − qN (x, t) distributed on
the domain of definition of the INS problem statement. This function is mathematically extremized,
which in practice becomes minimization, by rendering it orthogonal to the space of trial functions
��(x). This defines the GWS criterion (identical trial and test spaces), hence the GWS for the
Taylor-modified INS system approximate solution (13) is

TWSN ≡
∫

�
��L

m(qN ) d� ≡{0} for all � (14)

Assuming the integrals defined in (14) can be evaluated, all x-dependence vanishes yielding a
large system of ordinary differential equations of the form

TWSN =[MASS(�, �)]d{Q}
dt

+ {RES} = {0} (15)

where [MASS] is the TWS {�, �}-term augmented ‘mass matrix’ and RES contains all other
contributions from (14), including the TWS {�, �}-terms. The single-stage Euler TS in time with
implicitness parameter � is

�TS: {Q}n+1 ={Q}n + �t (�{Q}′n+1 + (1 − �){Q}′n) + O(�t f (�)) (16)

Equation (15) defines the time derivative as d{Q}/dt = {Q}′ = −[MASS]−1{RES}, hence substi-
tuting into (16) and multiplying through by [MASS] produces the computable algebraic statement

TWSN + �TS⇒ [JAC(�, �, �, �, �, {Q})]{�Q}p+1 =−{FQ({Q}, �, �, �, �, �,p)} (17)

{FQ} = [MASS(�, �)]{�Q} + {RES({Q}n+�, �, �)} (18)

In (17), p is the matrix iteration index with {�Q} the state variable current iterate. Further
in (18), {�Q} ≡ {Q}n+1 − {Q}n for {Q}n+1 the estimate for the current solution, where n, n + 1
denote time stations. The solution essence is

{�Q}p+1 =−[JAC(�, �, �, �, �, {Q})]−1{FQ({Q}, �, �, �, �, �, p)} (19)

where [JAC] ≡ �{FQ}/�{Q} is the TWS algorithm jacobian matrix, and the indicated matrix
inverse is replaced by a Krylov-type solver.

3.2. TWS algorithm FE discrete implementation

The TWSN + �TS weak statement theory for the INS system is complete. What remains is to
convert (14)–(18) into computable form, hence also enforce the constraint of continuity (5). The
standard approach is to define the approximate solution qN (x, t) in a spatially discrete form, herein
denoted qh(x, t), where h denotes a measure of the computational mesh. The implementation
devoid of any heurism is to project the spatially discrete approximation onto the union of FE
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744 S. SAHU AND A. J. BAKER

trial space basis functions {Nb(x)} constituted of polynomials complete to degree b. The formal
statement is

q(x, t) ≈ qN (x, t) ≡ qh(x, t) = ⋃
e
qe(x, t) = ⋃

e
{Nb(x)}T{Q(t)}e (20)

and (17) and (18) become analytically evaluated, via the formal calculus without arbitrariness, i.e.
no scheme is involved.

With the FE discrete implementation decision, the available asymptotic convergence theory [9]
predicts that for Re−1>0, i.e. viscosity effects are non-vanishing, the associated semi-discrete
approximate solution error is bounded as

‖eh(n�t)‖E�Cxh
2�
e ‖data‖�,�� + Ct�t

f (�)‖Q(t0)‖�∪��, � = min(b, r − 1) (21)

In (21) the constants C� are independent of h and �t , respectively, the measure of the com-
putational mesh �h and the time step interval, and ‖ · ‖ denotes a suitable norm, cf. Baker [24].
Thereby, convergence is controlled by b, the completeness degree of the FE basis, unless compro-
mised by r , a smoothness measure of the exact solution, hence all data driving the solution. In the
alternative instance of viscous effects being negligible, i.e. Re−1 ⇒ 0, the mesh measure exponent
in (21) degenerates to � = min(1, r − 1), hence the asymptotic convergence rate is independent of
FE basis completeness degree b.

3.3. Fourier representation in 1D

The TS-modified scalar transport equation (12) simplified to 1D is

Lm(q) = �q
�t

+ u
�q
�x

− 1

Pa

�2q
�x2

− �t

2

�
�x

(
�u

�q
�t

+ �u2
�q
�x

)

− �t2

6

�
�x

[
�u2

�
�x

�q
�t

+ �u2
�
�x

(
u

�q
�x

)]
+ O(�t3) = 0 (22)

where Pa is the placeholder for the non-D parameter appropriate to q . For example, in (7)
Pa=RePr, while for mass transport Pa=ReSc, where Sc is the Schmidt number associated
with binary diffusion.

The amplification factor Gh associated with the discrete approximate solution qh(x ,t) is
determined by assembling TWSh + �TS, (17), for (20) at the generic mesh node X j . The
resultant recursion stencil for the linear (b= 1) FE basis implementation is

a j−1 a j a j+1

Qn+1
j−1

Qn+1
j

Qn+1
j+1

= b j−1 b j b j+1

Qn
j−1

Qn
j

Qn
j+1

(23)

where Q j−1, j, j+1 are nodal values of the approximate solution and the coefficients a j and b j
contain all mesh-generated constants, INS parameters, and the TWS parameter set, recall (17),
omitting the � term since the b= 1 basis will not support the required differentiability. Recalling
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the Fourier representations

Q j−1 = Q(x − �x)= Q je
−im (24)

Q j+1 = Q(x + �x)= Q je
+im (25)

and substituting into (23), the solution for the TWS algorithm amplification factor is

Gh = b j−1e−im+b j+b j+1eim

a j−1e−im + a j + a j+1eim
(26)

Inserting data pertinent to the linear FE basis implementation of (17) yields (26) as the rational
polynomial of complex arguments

Gh
FE(k=1) = (2+�C2−3(1−�)�C2−6(1−�)D)+(1−�C2+3(1−�)�C2+6(1−�)D) cosm−i3C( 12�+(1−�)) sinm

(2+�C2+3��C2+6D�)+(1−�C2−3��C2−6D�) cosm−i3C( 12�−�) sinm

(27)

In (27), m = �h is the non-dimensional wave number, h is the measure of the (assumed) uni-
form mesh, C =U�t/h is the Courant number, equivalent to the non-dimensional time step, and
D ≡�t/Pah2 is the placeholder for the action of physical diffusion.
Any TWSh + �TS algorithm will exhibit discrete approximation error eh , as a function of wave

number m dependent upon the parameter set choice. For stability, the amplification factor (27)
magnitude must be bounded as |Gh |�1. Any TWSh + �TS algorithm m-dependent relative phase
velocity is computable from the real and imaginary components of the amplification factor (27) as

�h = 1

−mC
tan−1

(
Imag(Gh)

Real(Gh)

)
(28)

A precise statement of algorithm discrete approximation error in wave number space accrues
to multiplying (27) through by the complex conjugate, then clearing the denominator via a TS
operation of sufficiently high order. The solution remains a complex function and the resultant TS
to order seven in m is presented as Equation (29).

Gh
FE(k=1) = 1−iCm+

[
1

2
(�−�−D)−�

]
C2m2+i

⎡⎢⎢⎣
(
1

4
�(�−�)+ �

6
+(−�+�)�+�2

)
C3

+CD
(
−�

2
+2�

)
⎤⎥⎥⎦m3

+C2

⎡⎢⎢⎢⎣
− �

24
+C2

(
�2

8
(−�+�)+ �

6

(
−�+�

2

)
+
(

�

(
3

4
�−�

)
+1

4
�2+1

3
�

)
�

+ 3

2
(−�+�)�2+�3

)
D

( −1

12C2
+�D

C2
+
(

�2

4
+ �

6
−2��+��+3�2

))
⎤⎥⎥⎥⎦m4
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+ iC

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

180
+C2

(−��

48
+ �

72
+��

12

)
+C4

{−�3

16
(�−�)−��

4

(
�

2
−�

3

)
− �2

36

}

+C4
{
�

(
�3

2
−��

4
(3�−�)+�

(
�

2
−�

3

))}

+C4�2
{

−3�

2

(
�−3�

2

)
−3�2

4
− �

2

}

+C4(2�3(�−�)−�4)+D

(−�

24
+�

6
+(� − 3�)�D

+C2
(

�3

8
+��

6
+
(

−3

2
�+�

)
�� − 2

3
�� +

(
9

2
� − 3� − 4�

)
�2
))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

m5

+C2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−�

180
− �

720
+ �

90
+C2

{
��

12

(�

8
−�
)

− �

72
(� − �) + ��

36
+ ��

8

(
�

3
+�

)}
+C4

{
�5

32
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

m6

+C2
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+ O(m7) (29)

Finally, the analytical expression for TWS approximation error requires knowledge of the exact
solution, which for a 1D advection–diffusion problem is

q(x, t) = exp[i�(x − ut) − �2Dt] (30)
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The corresponding amplification factor is the ratio of solutions at two successive times computed
at location x :

Gexact = q(x, (n + 1)t)

q(x, nt)
= exp(−iCm − Dm2) (31)

and the associated TS is

Gexact = 1 − iCm −
(
C2

2
+ D

)
m2 + iC

(
C2

6
+ D

)
m3 +

[
C2
(
C2

24
+ D

2
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2

]
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− iC

(
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)
m5 −

[
C2
(
C4

720
+ C2D

24
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4

)
+ D3

6

]
m6 + O(m7)

(32)

The phase velocity (speed) error in a TWSh + �TS algorithm is ch ≡Gexact − Gh , approx-
imated as the difference between the TS expansions (29) and (32). Discarding the D terms,
since the focus is on the action of the parameter set {�, �, �, �,C} in the absence of physi-
cal diffusion, the phase error for b= 1 FE basis implementation, to the seventh order in wave
number m, is

chFE(k=1) = −[1 + 2� + (� − �)]C
2m2

2
+ i

[
1

6
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4
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m5
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+C2
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m6+O(m7)

(33)

The m1 term is missing in (33), hence any TWS + �TS parameter set {�, �, �, �,C} selection
yields a discrete solution with first-order phase accuracy for D ≡ 0. For order m2 accuracy, the term
coefficient [1+ 2�+ (�−�)] must vanish. For the time-accurate, non-diffusive Euler TS selection
� = 0.5, the trapezoidal rule, this accrues for any � = � for all C . For this � restriction, order
m3 phase accuracy results for −�/6 − 1/12= 0, hence the optimal value is � =−0.5. For these
decisions, an orderm4 phase accurate algorithm will result for the term coefficient �(1−C2)/24= 0,
which requires C = 1 or � = 0= �.

Thereby, the theory predicts the optimally phase-accurate TWSh + �TS algorithm for the b= 1
FE basis implementation accrues to the selections � = 0= �, � = 0.5 and � =−1/2. Terming this
the TWS-� algorithm, solutions will be order m4 phase accurate on a uniform mesh independent
of C . Actual TWSh + �TS algorithm solution accuracy is of course a function of C and mesh
non-uniformity.

3.4. Fourier representation in 2D

The TS-modified conservation principle for a 2D pure advection problem (Pa−1 = 0), recall (12),
in a rectangular Cartesian resolution and neglecting the TWS-� term is

Lm(q) = �q
�t

+ u
�q
�x

+ v
�q
�y

− ��t

2

[
�
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(
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�q
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)
+ �
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(
v
�q
�t

)]

− ��t

2

[
�
�x

(
u2

�q
�x

)
+ �

�x

(
uv

�q
�y

)
+ �

�y

(
vu

�q
�x

)
+ �

�y

(
v2

�q
�y

)]

− ��t2

6

[
�
�x

(
u2

�
�x

�q
�t

)
+ �

�x

(
uv

�
�y

�q
�t

)
+ �

�y

(
vu

�
�x

�q
�t

)

+ �
�y

(
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�
�y

�q
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)]
+ O(�t3) = 0 (34)
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The amplification factor Gh for the discrete solution qh(x, y, t) for (33) is again determined via
assembly of the TWSh+�TS algorithm at the generic mesh node (X j , Yk). This operation produces
a stencil technically similar to (23). The Fourier representations analogous to (25) and (26) are

Q j−1,k−1 = Q(x − �x, y − �y) = Q j,k exp(−i�x�1) exp(−i�y�2) (35)

Q j+1,k+1 = Q(x + �x, y + �y)= Q j,k exp(i�x�1) exp(i�y�2) (36)

for wave number definitions �1 = � cos 	 and �2 = � sin 	, recall Figure 1. For the bilinear FE
basis implementation of the TWSh + �TS algorithm, one thus determines

Gh = (b j−1e−i�1+b j+b j+1e+i�1 )e−i�2+(b j−1e−i�1+b j+b j+1e+i�1 )+(b j−1e−i�1+b j+b j+1e+i�1 )e+i�2

(a j−1e−i�1+a j+a j+1e+i�1 )e−i�2 + (a j−1e−i�1 + a j + a j+1e+i�1 ) + (b j−1e−i�1 + b j + b j+1e+i�1 )e+i�2

(37)

The theoretical analysis is tractable only for a uniform mesh, hence �1�x ≡m ≡ �2�y, thereby
�x ≡ h ≡�y in (35) and (36) and m remains the non-dimensional wave number. The resultant TS
expansion for Gh to order m4 is detailed in Appendix A.

The exact solution for the 2D pure advection problem is

q(x, y, t) = exp[−i{�1(x − ux t) + �2(y − uyt)}] (38)

for advection velocity vector resolved into Cartesian scalar components. The analytical amplifica-
tion factor remains the ratio of two successive time interval solutions, hence

Gexact = q(x, y, tn+1)

q(x, y, tn)
(39)

Alternatively, since �1 = � cos 	 and �2 = � sin 	

Gexact = exp[−im(Cx cos 	 + Cy sin 	)] (40)

where Cx and Cy denote the Cartesian resolution of the Courant vector C. The resulting TS
expansion to the first three terms in order m is

Gexact = 1 − i[Cx cos(	) + Cy sin(	)]m − 1
2 [Cx cos(	) + Cy sin(	)]2m2

+ i

6
[Cx cos(	) + Cy sin(	)]3m3 + O(m4) (41)

The TWSh + �TS algorithm phase remains ch =Gexact − Gh , which is readily approximated
from these TS expansions and is detailed in Appendix B to order m4. As always, stability accrues
to bounding |ch | = |G| − |Gh | by unity. Since |G| = 1 for the pure advection problem, then
|ch | = 1 − |Gh | and the resultant solution for phase velocity error to order m2 is

|ch | =
(
C2
x

2
+CxCy + C2

y

2
− 1

2
(� + �)(C2

x+C2
y)−�CxCy−C2

x�−2CxCy�−C2
y�

)
m2 (42)

From (42), it is clear that the phase velocity error for any TWSh+�TS algorithm with definitions
� = 0= � and � = 1/2 will be order m3 or better. It remains to probe the TS analysis to quantify
dependence on phase angle, hence Courant vector C, recall Figure 1.
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4. DISCUSSION AND RESULTS

4.1. Selected algorithms of the TWSh + �TS class

With proper interpretations, the TWSh+�TS construction readily admits recovery of independently
derived algorithms, recall Table I, whether they be FE-, FD- or FV-based originally. This class of
algorithms generally possesses non-zero, sometimes non-equal values of the TWS parameter set
{�, �}, rarely a non-zero � and may be time explicit or implicit (�). The comparison algorithms
selected include Brooks–Hughes SUPG, explicit TG, GLS, RG, Crank–Nicolson (CN), GWS and
the theory-predicted optimal-� TWS (TWS-�).

In their original derivations, only the TG(�= 0, � = 1=�, � = 0) and GLS(�= 2�= �, �
arbitrary) algorithms contain �t and �t2 as the term multipliers. TG fits directly, while GLS
is recovered by performing a time discretization first, then returning to a continuum form. The
algorithms of Dendy, Wahlbin and RG (�= �, � = 0), as established for a hyperbolic model prob-
lem, are identical to within Courant number C and mesh measure h. Their conversion to TWS form
results by replacing �t with the local measure of time h/|u|, a uniformly non-negative number.
The resultant TWS terms in (12), reduced to 1D and for constant u, are

�t

2
(�u) ≡ �hu

2|u| = �h sign(u)

2
,

�t

2
(�uu) ≡ �huu

2|u| = �h|u|
2

(43)

The local time scale definition implies C ≡ u�t/h = 1, which is compensated in the original works
by determination of an optimal � ≡ � = �0.

The original Brooks–Hughes SUPG algorithm was developed for a steady 1D problem with
optimal �. When generalized to the unsteady problem, SUPG is for all intents identical to RG,
with the definitions (43) and a constant potentially differing from �0. The classic FD algorithm CN
fits the TWS class for all parameters zero, upon diagonalizing the GWS mass matrix and � ≡ 0.5.

4.2. TWSh + �TS algorithm relative phase error

The comparison family is thus identified. TG accrues to � = 0= � and � = 1= � in (20). In (32),
extremum phase accuracy thus requires (1 − C2)/24= 0, hence greater than order m3 accuracy
occurs only for C = 1. In the original RG(SUPG) construction, the reported semi-discrete (only)
theoretical analysis [13] determined optimal phase accuracy accrues to � = 2/(C

√
15) = �. That

�>0 results guarantees infusion of an artificial dissipation mechanism, which will be proven. The
class of GLS constructions results for � = 2� = � which fixes the order m3 coefficient at −1/12,
thereby yielding at best order m2 phase accuracy. The final algorithms considered are GWS and
TWS-� for which the theory predicts order m3 and m4 phase accuracy, respectively.

For these six TWSh + �TS algorithms, the solution for phase velocity error, i.e. the difference
between unity and (28), as well as the departure of amplification modulus from unity, are graphed in
Figure 2(a) for C = 0.5. The abscissa semi-log scale, demarked on integer multiples of h, improves
resolution distinction in the all-important short-wavelength region. Except for TG, which exhibits
zero phase velocity dependence on wavelength 
, all other TWSh+�TS algorithms possess lagging
phase error for all 
 and, as anticipated, 100% error at 
 = 2h. In the interval 2h<
�3h, GLS
and RG(SUPG) exhibit minimal phase velocity error, but thereafter lose superiority to TWS-�. CN
exhibits the largest phase error throughout, and the TWS-� phase error is minimal for all 
>4h
(except for TG).
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Figure 2. Phase velocity and amplification factor modulus error, 1D pure
advection, C = 0.5, � = 0.5 (except for TG).

Figure 3. TWS algorithm discrete solution TS coefficients in non-dimensional wave-number space,
1D pure advection: (a) C = 0.25; (b) C = 0.5; and (c) C = 1.0.

The bar chart presentations in Figure 3(a)–(c) compare the magnitude of the theory TS coefficient,
for each wave number order m�, for Courant numbers C = 0.25, 0.5 and 1.0. For C = 0.25 and 0.5,
the progression in decreasing phase inaccuracy is TWS-�, TG, GWS, GLS, RG(SUPG) and CN.
At C = 1.0, the order is TWS-�, TG, RG(SUPG), GLS, GWS and CN. Clearly then, the theory
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predicts that the TWS-� algorithm is the optimal linear basis FE implementation of all selected
TWS + �TS formulations.

The remaining issue of theoretical importance is algorithm stability, which requires |Gh |�1. The
exact solution possesses |G| = 1, and the spectral distribution of the TWSh + �TS algorithm error
modulus is |eh | = |Gh | − |G|. Figure 2(b) graphs these solutions for |eh | for the six algorithms.
GWS, TWS-� and CN exhibit zero error for all wavelengths, hence possess no numerical diffusion.
At 
 = 2h, the modulus error for TG is 100% and for GLS and RG(SUPG) is 87%. Thereby, the
superior short-wavelength phase error accuracy of these two algorithms comes at the expense of
a very large level of numerical diffusion.

4.3. Unsteady pure advection in 1D

Numerical comparisons of algorithm performance accrues to propagation of a smooth or non-
smooth initial condition (IC) by a constant imposed velocity u. The analytical solution (28),
simplified for vanishing diffusion coefficient D in 1D, is

q(x, t) = exp[i�(x − ut)] (44)

which confirms that any IC q(x, t0) will propagate absolutely unaltered parallel to the x axis with
speed u. Thereby, this problem statement belongs to the verification class, as the exact solution is
known for all C .

For IC the (smooth) gaussian, and propagated over three IC wavelengths downstream of the IC
position, TWSh +�TS algorithm solutions are compared to the exact solution in Figure 4(a)–(e) for
C = 0.5= �, except TG which retains the definition � = 0. Clearly, the most accurate solution in
the eyeball norm is TWS-�, followed in order by TG, GWS, RG(SUPG), GLS and CN. The theory
predicts that the RG(SUPG) and GLS(� = 0.5) phase velocity and amplitude error distributions
are very similar, Figure 2, which is visually confirmed by the data in Figure 4.

The developed theory precisely predicts this relative performance. Table II lists the computed
nodal extrema for each algorithm tested for C = 0.5 and 1.0. Except for TWS-� and TG, algorithm
performance degrades for larger C , with additional loss of peak value and larger dispersion error-
induced lagging phase error.

The theory further predicts that solution quality improves/degrades for use of smaller/larger
Courant numbers. Figure 5(a)–(e) summarizes solutions for gaussian IC propagation compared to
the exact solution for C = 1. Except for TWS-� and TG, solution fidelity degenerates significantly
in the eyeball norm, with CN the worst performer. The theory prediction that both TWS-� and TG
solutions are essentially nodally exact is clearly evident at C = 1. Further, for the IC a non-smooth
square wave, both algorithms still generate nodally exact solutions on a uniform mesh at C = 1,
Figure 6, which will occur for any IC.

4.4. Theory improvements to published algorithms

The TWSh +�TS theory provides the opportunity to optimize phase accuracy for algorithms in the
class. For example, the orderm4 truncation error coefficientC2(�−2C2)/24 can be minimized while
retaining � = � for RG(SUPG) and GLS. The formulations remain Courant number dependent,
specifically for C = 1 optimal � = 2= �, while for C = 0.5 the value is 0.5, and the modified
algorithms thereby match the optimal phase accuracy order associated with TWS-�.

Another example is the classical CN algorithm [25]. The distinguishing characteristic of the FE
linear basis implementation of TWSh + �TS, compared to CN, is the non-diagonal mass matrix
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Figure 4. 1D pure advection of a Gaussian IC, C = 0.5, dashed line is exact solution,
following 3-IC-wavelength translation.
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Table II. Solution nodal extrema after 3-wavelength translation, Gaussian IC,
1D pure advection.

Max Min

GWS 0.9938 −0.0767
RG(SUPG) 0.9385 −0.0508

GLS 0.9398 −0.0516
C = 0.5 TG 0.9608 −0.0207

TWS-� 1.0087 −0.0210
CN 0.8397 −0.3374
CNm 0.8556 −0.3207

GWS 0.9496 −0.1765
RG(SUPG) 0.9194 −0.1458

GLS 0.8988 −0.1171
C = 1.0 TG 1.0 0.0

TWS-� 1.0 0.0
CN 0.7989 −0.3649
CNm 0.8640 −0.3104

in (15). Diagonalizing the mass matrix, a commonly examined form in the FE literature, and then
proceeding through the theory process yields

Gh
CNm–FD = 1 + 3�C2(cosm + 1) − i3C sinm

(3 + �C2 + 3��C2) − C2(� + 3��) cosm + i3C

(−�

2
+ �

)
sinm

(45)

The corresponding CN-modified (CNm) algorithm phase error TS through third order is

chCNm–FD = −2(C2�)−iC[1+(1+C2��−2C2��)]m

+C2
[
−1

2
−1

2
(�−�)−1

3
C2��+�(1−C2�2)−2�C2

(
−�2

4
− �

3
+�(�−�−�)

)]
m2

+ i

[
C3

6
−
(
C

6
+C3

(
− 5

12
��− �

6
+1

3
��

))

− C2(−C+C3�(�−2�))

(
−�2

4
− �

3
+�(�−�−�)

)]
m3+O(m4) (46)

From (46), first-order phase accuracy requires � = 0, whereupon the order m2 TS coefficient
becomes C2(−1/2+�), which is annihilated by setting � = 0.5, as in the original CN formulation.
The order m3 coefficient becomes C3(−1/12− �/3)−C(1−C�)/6, which will not vanish for any
� or C . As occurred with the theory-modified RG(SUPG) and GLS algorithms, an optimal � can
be chosen dependent on C . Specifically, for C = 1 the optimal � is −0.5, while for C = 0.5 order
m3 phase accuracy is independent of �. Note, however, that this CNm algorithm cannot match the
m4 order of the optimal TWS-� algorithm.
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Figure 5. 1D pure advection of a Gaussian initial distribution, C = 1.0, dashed line is
exact solution following 3-wavelength translation.
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Figure 6. 1D pure advection of a square wave IC for TWS-�, C = 1.0, dashed line is
exact solution following 7-wavelength translation.

Figure 7. 1D pure advection of a Gaussian initial distribution for CN and CNm, C = 1.0, dashed line is
exact solution following 3-wavelength translation.

For the gaussian IC verification problem, solutions generated via the TWS theory-optimized
CNm algorithm are improvements over those generated by classical CN, Figure 7, see also Table II.
Although the improvement is truly modest, that it was predicted by the developed theory is the
key result.

4.5. Identified TWSh + �TS algorithm theory anomalies

During evaluation of the presented theory, anomalies for certain algorithms departing from expected
performance have been observed. Recalling (23) as the general statement of the TWSh+�TS stencil,
linear FE basis implementations of both the TWS-� and TG algorithms, when assembled at the
generic node X j for C = 1, produce (23) in the form

(Q j + Q j+1)n+1 = (Q j + Q j−1)n (47)
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Recalling that n is the time-step index, (47) states precise transport of nodal data over one mesh
interval at each time step on a uniform mesh at C = 1 and any IC. Thereby, the recorded C = 1
algorithm performance for any IC is not a surprise.

Repeating this process for the derived RGm (SUPGm) algorithm, while retaining arbitrary � ≡ �,
assuming � small and setting � = 0.5 yields (23) in the form

− 1

12
Qn+1

j−1 +
(

�

2
+ 2

3

)
Qn+1

j +
(
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For sufficiently large �, (48) takes the approximate form
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which, upon obvious term cancellation, predicts exact propagation of nodal data at C = 1. Figure 8
confirms the theory prediction for propagation of the gaussian IC for � = 100= �, as the RGm
(SUPGm) and exact solutions are very close. However, such large values of {�, �} eliminate the
base algorithm terms, hence are not at all practical.

Among the considered TWSh + �TS algorithm class, TWS-�, TG and RGm (SUPGm) each
exactly propagate nodal data at C = 1. This occurrence requires a solution of the amplification
factor phase velocity and modulus spectral distribution. Viewing Figure 9(a), the theory predicts
a discontinuous jump in phase velocity error, switching from substantial leading on 2h<
�4h to
near zero lagging for all wavelengths 
>4h. The RG(SUPG) and GLS algorithms also exhibit this
phenomenon, however, the associated solutions are not nodally exact due to the associated large
artificial diffusion present, Figure 9(b). The GWS and CN algorithms exhibit lagging phase error
at all wavelengths, which totally prevents exact propagation of nodal data.

Any TWSh+�TS algorithm implemented with �>0.5 inherits a numerical diffusion mechanism,
since |Gh |<1 for this selection. The bounding case is � = 1, for which the phase velocity and

Figure 8. 1D pure advection of a Gaussian initial distribution, C = 1.0, RGm with �= 100= �, dashed
line is exact solution following 3-wavelength translation.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:737–783
DOI: 10.1002/fld



758 S. SAHU AND A. J. BAKER

Figure 9. Phase velocity and amplification factor modulus error, C = 1.0 and �= 0.5.

Figure 10. Phase velocity and amplification factor modulus error, C = 0.5 and �= 1.0.

modulus error distributions for C = 1 are graphed in Figure 10(a) and (b). The RGm (SUPGm)
algorithm now exhibits zero phase error for all 
>2h+ε, but the extremum distribution of modulus
error coexists. All other algorithms retain the expected wavelength-dependent distributions for
phase velocity. The other interesting prediction is zero modulus error for the GWS, TWS-� and
CN algorithms at 
 = 2h, with the CN algorithm exhibiting minimal error over the wavelength
spectrum. One can conclude that these algorithms will not perform acceptably, as verified by the
verification problem solutions discussed.

An additional occurrence of anomalous theory prediction, detailed in Sahu [26], resulted from
use of a canned optimization code [27]. Clearly, prediction of optimal TWS theory parameter sets
depends totally on code robustness. The interesting result from this exercise was the prediction
of �<0.5, classically unstable, upon inputting large TWS coefficients {�, �} at search initia-
tion. Specifically, for initiation at � = 100= �, � = 0 and � = 0.5, the code returned � = 100.048,
�= 100.0532, �= 0.27067 and � = 0.49743. Substituting this prediction into (29), the fractional
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Table III. Solution nodal extrema after 25 time steps, Gaussian IC, 1D advection–diffusion,
Pe= 10, 1000; C = 1, M = 40.

C = 1

Pe= 10 Pe= 1000

Max Min Max Min

Exact 0.684000 0 0.995090 0

GWS 0.679990 −1.422E−02 0.966789 −1.4810E−01
RG(SUPG) 0.674538 −5.207E−03 0.931993 −1.1942E−01
GLS 0.681359 −9.816E−04 0.908791 −9.8639E−02
TG 4.362461 −4.523E+00 0.996144 −5.8300E−06
TWS-� 0.689254 −6.042E−05 0.995248 −5.4484E−10
CN 0.645886 −1.058E−01 0.833308 −3.4159E−01

{�, �} difference is compensated by �<0.5, which minimizes the order m2 TS coefficient, while
� = 0.27067 minimizes the order m3 TS coefficient.

4.6. Unsteady advection–diffusion in 1D

Now including physical diffusion, for a smooth gaussian IC distribution, the verification problem
analytical solution is [21]

q(x, t) = exp[−(x − x0 − t)2/2(1 + 2t/Pe)]√
(1 + 2t/Pe)

(49)

where Pe is the Peclet number. Sahu [26] has shown that for Pe= 10 and � = 0.5, after 25 time
steps at C = 1, both the GWS and RG(SUPG) solutions exhibit a small dispersive lagging phase
error. The GLS solution is devoid of dispersion error, the algorithm distinction being the larger
� = �, recall Table I. The TG � = 0 solution is unstable, while the CN solution exhibits a large
dispersion error with lagging phase. The TWS-� and GLS solutions slightly over/under predict
the analytical peak and both are visually monotone. For this problem specification, the accuracy
performance order in solution extrema is TWS-�/GLS, RG(SUPG), GWS, CN, TG, Table III.

For Pe= 1000, the problem is advection dominated, hence maintaining accuracy is more chal-
lenging. Based on the theory, one expects the TWS-� algorithm will yield optimum solution fidelity.
This is indeed true; for Pe= 1000, the accuracy performance order in solution extrema is TWS-�,
TG, GWS, RG(SUPG), GLS, CN, Table III. It is no surprise that this order is identically that
observed for the pure advection case.

Finally, decreasing the time step size to C = 0.5 indeed improves accuracy across all algorithms.
Of note, recalling that TG was unstable for C = 1.0 and Pe= 10, it now performs second to TWS-�.
These results highlight the limitation of the TG algorithm being time explicit.

4.7. Theory for pure advection in 2D

In proceeding to multi-dimensions, the basic requirement is to probe the TWSh + �TS theory TS
wave number expansion, (37), to quantify phase angle and Courant vector C dependencies, recall
Figure 1. Figure 11 presents the sample space of wave vector angles 	 = �/2, 5�/8, 3�/4, �, 5�/4
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Figure 11. Sample space of wave vector angles for TS theoretical error quantization.

and 11�/8, along with sample geometric coordinates for 0.19�|C|�0.41. The theory predicts
algorithm error is angular quadrant independent, even though C= (r��t/h)ê is indeed a vector,
where � is angular velocity and ê is the unit vector tangent to the 	 direction. This prediction is
in agreement with the results in Christon et al. [7, 8].

A manipulation of the {�, �} coefficient set terms in (12) are required to recover the resolved
form of SUPG reported in Brooks–Hughes [15], hence also RG if its development had been multi-
dimensional. Since velocity is a vector, and a multi-dimensional FE possesses at least two mesh
measures, the local time scale generalization for TWS would be �t ≡ |ui |hi/u2 = |̂ui |hi/|u|, a
non-negative number, with summation on the repeated index and hi the mesh scale in the direction
of ui . The modifications to the pertinent TWS terms in (12), companion to (43), would be

�t

2
(�u j ) ≡ �hi |ui |u j

2u2
= �hi |̂ui |̂u j

2
,

�t

2
(�u juk) ≡ �hi |ui |u juk

2u2
= �hi |̂ui |̂u juk

2
(50)

where superscript ‘hat’ signifies the associated unit vector.
For the range of TWSh + �TS algorithms considered to here, Figure 12(a)–(c) comparatively

graphs each algorithm TS coefficient magnitude, for direction 	 = 3�/4 and 0.19�|C|�0.41, over
the order range of non-dimensional wave number m. Figure 13(a)–(c) presents the companion
data for 	 = 5�/8. The dominant error order for RG(SUPG), GLS and TG is m2 for all 	 and |C|
and the associated TS coefficients are each relatively large. In distinction, the lead error order for
GWS, CN and TWS-� is m3. Since the TS coefficient magnitudes for CN are exceptionally large,
Figures 12(d) and 13(d) graph only the GWS and TWS-� data for an improved comparison.

One key observation is that the order m4 error associated with TWS-� in 1D is degraded to order
m3 in 2D (and 3D). However, as algorithm solution fidelity is dominated by the non-vanishing
TS coefficient lowest order in m, the theory still predicts TWS-� is optimal, as this coefficient is
from 1/2 to 1/5 that of GWS. The same comment holds for the m4 coefficients, while the m5

coefficient being small and nominally identical is of marginal practical impact. As the final caveat,
both the TWS-� and TG algorithm TS order m3 coefficients vanish for 	 aligned with a coordinate
axis, i.e. the 1D form already established.

In summary, TWS-� exhibits the minimum magnitude TS coefficient for all orders m, 	, |C|
and coordinates tested. Thereby, the theory again predicts that TWS-� algorithm solutions will be
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Figure 12. Theoretical Taylor series wave number dependence for TWSh + � TS algorithms,
2D pure advection, 	= 3�/4, 0.19<C<0.41.

optimally accurate among the class considered. Hence, there exists little incentive to further consider
RG(SUPG), GLS or CN. As a final comparison, Figure 14 quantifies order m distinctions for GWS
versus TWS-� on �/2�	�3�/4 and extremum |C| = 0.41. Note the zero TS coefficients for orders
m3 and m4 for TWS-� on 	 = �/2, again due to coordinate alignment. Predicted solution fidelity
is clearly dependent on |C|. Comparing the data in Figures 11–13, the lead order TS coefficient
magnitudes are roughly three times larger at |C| = 0.41 than at |C| = 0.19, which provides an
estimate of Courant number effect on error.

4.8. A pure advection verification in 2D

The definitive verification problem is the rotating cone [28] defining pure advection of a mass
distribution q(x, t) on a 2D solution domain �. On domain boundary segments �� experiencing
inflow, the BC is q(xb, t) = qb = 0. Conversely, on segments with outflow the BC is homogeneous
Neumann, i.e. n̂ · ∇q = 0. The IC is q(x, t0) = 0 on � ∪ �� except for an isolated non-zero IC
distribution which is circularly advected around � by imposition of the solid body rotation velocity
vector field u(x, y) =u(r) = r�êh. Here, r is the radial coordinate with origin at the centre of �, �
is the angular frequency and êh is the unit vector tangent to the angular direction, recall Figure 11.

The resultant Courant vector C=C êh =
√

(C2
x + C2

y)êh is distributed as a linear function of

radius r .
The smooth IC for the rotating cone problem is a gaussian, illustrated in perspective in Figure 15.

This distribution is also identical to the exact solution following any motion induced by the imposed
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Figure 13. Theoretical Taylor series wave number dependence for TWSh + � TS algorithms,
2D pure advection, 	= 5�/8, 0.19<C<0.41.

Figure 14. Theoretical Taylor series wave number dependence for GWSh , TWSh + � TS algorithms, 2D
pure advection, 	= �/2, 5�/8, 3�/4, |C| = 0.41.
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Figure 15. Gaussian IC and exact solution for the rotating cone verification problem.

velocity vector field. The computational experiments are conducted for exactly the time interval
required for the analytical solution to complete one circulation around �, whence the exact solution
remains precisely identical to the IC, Figure 15. The Courant vector magnitude at the cone centroid
is |C| = 0.3, and the range over the IC distribution is 0.19�|C|�0.41.

For the FE bilinear basis implementation of each considered TWSh + �TS algorithm, Figure 16
graphs in perspective the resultant solutions after the precise time for the analytical solution to
make one circuit around the domain �. The mesh for each solution is uniform rectangular cartesian.
The TWS algorithm particulars for each method are listed in the figure header and the extremum
solution values are appropriately recorded. In the eyeball norm, TWS-� produces the most accurate
solution in all comparison bases, i.e. reaching the correct location, preservation of the sharp peak
value (100), distribution symmetry and minimal magnitude (−6.5) dispersion error-induced wake.
In the order of decreasing solution accuracy with (peak, wake) magnitude are GWS(94,−15.3),
SUPG(RG)(89.2,−11.6), TG(83.3,−3.4), GLS(81.9,−4.6) and lastly CNFD(44.6,−27.9). Since
the TWS {�, �} term operators are {dispersive, diffusive}, the action of diffusive moderation of
dispersion error is clearly illustrated. For corroboration, Brookes–Hughes [15] report their SUPG
solution peak to be 88. Finally, the non-diffusive CNFD algorithm suffers rampant dispersion error
distortion, as theoretically predicted by the large TS coefficient on the order m2 term.

These data confirm that TWS-� produces the optimally accurate solution for the rotating cone,
in comparison to the considered algorithms. To evaluate the impact of an unstructured mesh
implementation, the TWS algorithm was reformed using the FE natural coordinate (triangle) linear
basis, and simulations executed on the same bilinear basis mesh with each uniform quadrilateral
bisected into two triangles. Figure 17 graphs in perspective the resultant solutions generated for
TWS-�, GWS and TG. Each algorithm solution suffers a modest degradation in accuracy, quantified
in Table IV in terms of extremum nodal values. For either FE basis implementation, the theoretical
prediction that the TWS-� solution is optimal in the class is fully verified.
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Figure 16. 2D pure advection rotating cone verification problem, discrete solutions after one
revolution, uniform Cartesian mesh, |C| = 0.3 at IC centroid.
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Figure 17. 2D pure advection rotating cone verification problem, discrete solutions after one
revolution, uniform triangular mesh, |C| = 0.3 at IC centroid.

Table IV. 2D pure advection, algorithm nodal extrema after one rotation, |C| = 0.3 at IC
centroid, FE bilinear and natural coordinate linear basis implementations.

Uniform Cartesian mesh Uniform triangular mesh

� � � � |C| Max Min Max Min

TWS-� 0 0 −0.5 0.5 0.3 100.0 −6.5 98.4 −9.5
GWS 0 0 0 0.5 0.3 94.2 −15.3 93.4 −14.8
TG 0 1 1 0 0.3 83.3 −3.4 80.6 −3.9
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Figure 18. INS thermal cavity specification, 8× 1 aspect ratio.

4.9. An incompressible Navier–Stokes validation

The final computational assessment of theory prediction of TWS-� optimality is for a genuine
INS validation problem. Selected is the 8× 1 aspect ratio differentially heated natural convection
cavity, Figure 18, for which experimental data confirm the resultant buoyancy-generated flowfields
are Rayleigh number dependent. Specifically, these data confirm transition from a steady, single
cell recirculation to an unsteady flowfield at a critical Rayleigh number [29]. Christon et al. [30]
report the collection of CFD predictions of roughly two dozen numerical models, confirming that
the critical Rayleigh number is Rac ≈ 3.1E+05.

As computationally validated in [31], imposing Ra>Rac generates an unsteady flowfield with
significant multi-scale features induced by vortex-shedding vertical boundary layer separations
yielding transient, multiple-scale circulating eddy distributions. This predicted multi-scale thermal
flow field content is selected to evaluate the moderation of CFD algorithm GWS dispersion error
via the TWS-� algorithm.

The BCs for this problem statement are stationary with left and right wall temperatures constant
at Thot and Tcold, respectively, with the cavity top and bottom surfaces insulated. The gravitational
body force operates vertically, which induces flowfield creation via natural convection. Thereby, it
is appropriate to non-dimensionalize the INS system (5)–(7) using a reference velocity based on
the thermal BC specification. Hence, define Ur as

Ur =√�g�TrW (51)
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Figure 19. INS temperature distributions after 1500 time steps from the identical IC, GWS and
TWS-� algorithms, Ra= 3.4E+07, M = 41× 201.

where �Tr = Thot − Tcold and W is the cavity width. This definition makes the Reynolds number
proportional to the square root of Ra, defined as

Ra = g��TW 3

PrDi2
(52)

where Di is the thermal diffusivity. Pr = 0.71 is constant, and the computational test was conducted
for Ra= 3.4E+07, well above the critical value. The associated Reynolds number is Re= 6850.

The required GWS and TWS-� algorithms for the complete INS statement (5)–(10) exist in the
UT CFD Lab research code aPSE. The theoretical formulation is due to Williams et al. [32] for
imposing the constraint of continuity (5), which adds a pair of Poisson equations to the parent
INS system. The TWS algorithm parameter definitions were � = 0= �, � =−0.5 only for TWS-�,
and � = 0.5. The code implementation uses the FE bilinear basis for the entire state variable, and
the mesh contained M = 41× 201 rectangular cartesian elements, solution-adapted via geometric
progression refinement in all near-wall regions.

Figure 19 graphs the unsteady temperature distributions computed by the two considered algo-
rithms, with IC a previously executed long-time solution, and integrating forward 1500 time steps
at a fixed �t . During these 1500 time steps, the unsteady flowfield ‘turned over’ in the cavity
about twice. There exists a rich multi-scale distribution of thermal entities throughout the time
evolution. The thermal boundary layers are very thin, corresponding to Re= 6850, and vortex
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Figure 20. Close-up of INS temperature distributions after 1500 time steps for
GWS and TWS-�, Ra= 3.4E+07, M = 41× 201.

shedding from the vertical wall boundary layers is clearly visible about mid-height in the cavity
at this time station.

On the scale of this presentation, the GWS and TWS-� temperature solutions are visually very
similar. However, windowing in on the significant thermal eddy structures about three-quarters up
the left wall, the graphs in Figure 20 confirm that the GWS dispersion error-induced roughness
of the temperature contours are significantly smoothed by the TWS-�-algorithm. This observation
can be quantified theoretically via the asymptotic error estimate (21). Specifically, the optimal
solution will extremize the energy norm, and computational experience for thermal cavity problems,
Ericson [33] confirms the approach is from below. The temperature energy norms for the GWS
and TWS-� solutions at this time station were 6.63116E−05 and 3.33277E−04 for Ra= 3.4E+07.
A second simulation conducted at Ra= 3.4E+08 generated the corresponding norm comparison
2.086058E−07 and 2.086188E−07, respectively. These data pairs provide a sound mathematical
confirmation of TWS-� optimality.

Additional confirmation accrues to detailed point norm analysis of the velocity distribution at
this time station. Figure 21 graphs the corresponding streamfunction distributions, as computed
from the solution velocity vector fields via a weak statement on the calculus definition. In the
eyeball norm, the inset close-ups of the vortex in the lower domain confirms the increased size
of the bubble extremum for TWS-�. Further, the TWS-� solution exhibits streamfunction nodal
extrema throughout the solution process. As detailed in Table V, at each time point in the unsteady
evolution, the TWS-� solution produces the extremum streamfunction range, which corresponds
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Figure 21. INS streamfunction distributions after 1500 time steps
for GWS and TWS-�, Ra= 3.4E+07, M = 41× 201.

Table V. INS 8× 1 thermal cavity streamfunction extrema, Ra= 3.4E+07.

Time(s) Min Max

Ra= 3.4E+07, Re= 6850
1.40E+02 �= 0 −0.0795979 0.00114737

�= −0.5 −0.0795983 0.00114807

1.49E+02 �= 0 −0.0808421 0.002806
�= −0.5 −0.0810310 0.003354

1.50E+02 �= 0 −0.079579 0.0011473
�= −0.5 −0.079786 0.0018510

1.63E+02 �= 0 −0.0687447 0.0004458
�= −0.5 −0.0704804 0.0012224

one to one with extremum velocity magnitude. These point norm data differences are indeed
small, but in the right direction for every time station data pair, as required for further theory
confirmation.
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5. CONCLUSIONS

The TWSh + �TS algorithm spectral theory, developed in completeness for linear and bilinear
FE basis implementations, provides a predictive framework for identifying optimal algorithm
constructions in the class. The generated approximation error TS expansion in non-dimensional
wave number space is precisely predictive of actual computational performance, as fully verified
for the selected scalar transport test cases. The theory generated spectral distributions of phase
velocity and amplification factor modulus error agree completely with the results of these tests.
Finally, the theory contains as well the influence of time integration choice, the Courant vector
magnitude and wave vector angle dependency, and further predicts angular quadrant independence.

The theory predicts, and test case results confirm, the superior performance of the TWS-�
algorithm over all other considered candidates in the class for 1D and 2D scalar advection. It
is fair to assume this conclusion holds for 3D pure advection, and/or convection–diffusion as
well. Anomalies in implementation of the theory were highlighted. Finally, computed results for
a genuine unsteady incompressible-thermal NS validation-quality problem statement, containing
significant multi-scale content for both vector and scalar fields, fully complements the required
validation of the theory.

APPENDIX A: TS EXPANSION OF AMPLIFICATION FACTOR FOR TWSh + �TS
ALGORITHMS IN ORDERS OF NON-DIMENSIONAL WAVE NUMBER

FOR 2D PURE ADVECTION
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27
Uy2��t2�y2 Sin[	]2

− 4

27
�y4 Sin[	]2 −Uy2�t2�y2�Sin[	]2 +Uy2�t2�y2�2 Sin[	]2

+ 1

81
Ux4�2�t4(−Cos[	]2 − Sin[	]2)
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+ 2

81
Ux2Uy2�2�t4(−Cos[	]2 − Sin[	]2) + 1

81
Uy4�2�t4(−Cos[	]2 − Sin[	]2)

− 2

81
Ux2��t2�y2(−Cos[	]2 − Sin[	]2) − 2

81
Uy2��t2�y2(−Cos[	]2 − Sin[	]2)

+ 1

81
�y4(−Cos[	]2 − Sin[	]2) − 2

81
Ux4�2�t4

(
−1

2
Cos[	]2 − Sin[	]2

)

+ 2

81
Ux2Uy2�2�t4

(
−1

2
Cos[	]2 − Sin[	]2

)
+ 4

81
Uy4�2�t4

(
−1

2
Cos[	]2 − Sin[	]2

)

− 2

81
Ux2��t2�y2

(
−1

2
Cos[	]2 − Sin[	]2

)
− 8

81
Uy2��t2�y2

(
−1

2
Cos[	]2 − Sin[	]2

)

+ 4

81
�y4

(
−1

2
Cos[	]2 − Sin[	]2

)
+ 4

81
Ux4�2�t4

(
−Cos[	]2 − Sin[	]2

2

)

+ 2

81
Ux2Uy2�2�t4

(
−Cos[	]2 − Sin[	]2

2

)
− 2

81
Uy4�2�t4

(
−Cos[	]2 − Sin[	]2

2

)

− 8

81
Ux2��t2�y2

(
−Cos[	]2 − Sin[	]2

2

)
− 2

81
Uy2��t2�y2

(
−Cos[	]2 − Sin[	]2

2

)

+ 4

81
�y4

(
−Cos[	]2 − Sin[	]2

2

)
− 8

81
Ux4�2�t4

(
−1

2
Cos[	]2 − Sin[	]2

2

)

+ 2

81
Ux2Uy2�2�t4

(
−1

2
Cos[	]2 − Sin[	]2

2

)
− 8

81
Uy4�2�t4

(
−1

2
Cos[	]2 − Sin[	]2

2

)

− 8

81
Ux2��t2�y2

(
−1

2
Cos[	]2 − Sin[	]2

2

)
− 8

81
Uy2��t2�y2

(
−1

2
Cos[	]2 − Sin[	]2

2

)

+ 16

81
�y4

(
−1

2
Cos[	]2 − Sin[	]2

2

)))
m2

+
(

− 1

�y8

(
(iUx�t�y3 Cos[	] − iUy�t�y3 Sin[	])

×
(

2

27
Ux2Uy2�2�t4 Cos[	]2 − 1

27
Uy4�2�t4 Cos[	]2 + 4

27
Ux2��t2�y2 Cos[	]2

− 4

27
Uy2��t2�y2 Cos[	]2 − 4

27
�y4 Cos[	]2 +Ux2�t2�y2�2 Cos[	]2

+ 2UxUy�t2�y2�2 Cos[	]Sin[	]

− 1

27
Ux4�2�t4 Sin[	]2 + 2

27
Ux2Uy2�2�t4 Sin[	]2 − 4

27
Ux2��t2�y2 Sin[	]2
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+ 4

27
Uy2��t2�y2 Sin[	]2 − 4

27
�y4 Sin[	]2 +Uy2�t2�y2�2 Sin[	]2

+ 1

81
Ux4�2�t4(−Cos[	]2 − Sin[	]2) + 2

81
Ux2Uy2�2�t4(−Cos[	]2 − Sin[	]2)

+ 1

81
Uy4�2�t4(−Cos[	]2 − Sin[	]2) − 2

81
Ux2��t2�y2(−Cos[	]2 − Sin[	]2)

− 2

81
Uy2��t2�y2(−Cos[	]2 − Sin[	]2) + 1

81
�y4(−Cos[	]2 − Sin[	]2)

− 2

81
Ux4�2�t4

(
−1

2
Cos[	]2 − Sin[	]2

)
+ 2

81
Ux2Uy2�2�t4

(
−1

2
Cos[	]2 − Sin[	]2

)
+ 4

81
Uy4�2�t4

(
−1

2
Cos[	]2 − Sin[	]2

)
− 2

81
Ux2��t2�y2

(
−1

2
Cos[	]2 − Sin[	]2

)
− 8

81
Uy2��t2�y2

(
−1

2
Cos[	]2 − Sin[	]2

)
+ 4

81
�y4

(
−1

2
Cos[	]2 − Sin[	]2

)

+ 4

81
Ux4�2�t4

(
−Cos[	]2 − Sin[	]2

2

)
+ 2

81
Ux2Uy2�2�t4

(
−Cos[	]2 − Sin[	]2

2

)

− 2

81
Uy4�2�t4

(
−Cos[	]2 − Sin[	]2

2

)
− 8

81
Ux2��t2�y2

(
−Cos[	]2 − Sin[	]2

2

)

− 2

81
Uy2��t2�y2

(
−Cos[	]2 − Sin[	]2

2

)
+ 4

81
�y4

(
−Cos[	]2 − Sin[	]2

2

)

− 8

81
Ux4�2�t4

(
−1

2
Cos[	]2 − Sin[	]2

2

)
+ 2

81
Ux2Uy2�2�t4

(
−1

2
Cos[	]2 − Sin[	]2

2

)

− 8

81
Uy4�2�t4

(
−1

2
Cos[	]2 − Sin[	]2

2

)
− 8

81
Ux2��t2�y2

(
−1

2
Cos[	]2 − Sin[	]2

2

)

− 8

81
Uy2��t2�y2

(
−1

2
Cos[	]2 − Sin[	]2

2

)
+ 16

81
�y4

(
−1

2
Cos[	]2 − Sin[	]2

2

)))

+ 1

�y4

(
− 2

27
iUx3��t3�y Cos[	]3+ 2

27
iUxUy2��t3�y Cos[	]3+ 4

27
iUx�t�y3 Cos[	]3

+ 2

27
iUx3Uy��t3�y Sin[	]3 − 2

27
iUy3��t3�y Sin[	]3 + 4

27
iUy�t�y3 Sin[	]3

− 1

27
iUx3��t3�y

(
−1

6
Cos[	]3 − Cos[	]Sin[	]2

)

+ 2

27
iUxUy2��t3�y

(
−1

6
Cos[	]3 − Cos[	]Sin[	]2

)
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− 2

27
iUx�t�y3

(
−1

6
Cos[	]3 − Cos[	]Sin[	]2

)

− 4

27
iUx3��t3�y

(
−1

6
Cos[	]3 − 1

2
Cos[	] Sin[	]2

)

+ 2

27
iUxUy2��t3�y

(
−1

6
Cos[	]3 − 1

2
Cos[	]Sin[	]2

)

− 8

27
iUx�t�y3

(
−1

6
Cos[	]3 − 1

2
Cos[	] Sin[	]2

)

+ 2

27
iUx2Uy��t3�y

(
−Cos[	]2 Sin[	] − Sin[	]3

6

)

− 1

27
iUy3��t3�y

(
−Cos[	]2 Sin[	] − Sin[	]3

6

)

− 2

27
iUy�t�y3

(
−Cos[	]2 Sin[	] − Sin[	]3

6

)

+ 2

27
iUx2Uy��t3�y

(
−1

2
Cos[	]2 Sin[	] − Sin[	]3

6

)

− 4

27
iUy3��t3�y

(
−1

2
Cos[	]2 Sin[	] − Sin[	]3

6

)

− 8

27
iUy�t�y3

(
−1

2
Cos[	]2 Sin[	] − Sin[	]3

6

)

+ 1

27
iUx3��t3�y

(
−1

6
Cos[	]3 + Cos[	]

(
−1

2
Cos[	]2 − Sin[	]2

))

+ 1

27
iUxUy2��t3�y

(
−1

6
Cos[	]3 + Cos[	]

(
−1

2
Cos[	]2 − Sin[	]2

))

− 1

27
iUx�t�y3

(
−1

6
Cos[	]3 + Cos[	]

(
−1

2
Cos[	]2 − Sin[	]2

))

+ 1

27
iUx2Uy��t3�y

(
−1

6
Sin[	]3 + Sin[	]

(
−Cos[	]2 − Sin[	]2

2

))

+ 1

27
iUy3��t3�y

(
−1

6
Sin[	]3 + Sin[	]

(
−Cos[	]2 − Sin[	]2

2

))

− 1

27
iUy�t�y3

(
−1

6
Sin[	]3 + Sin[	]

(
−Cos[	]2 − Sin[	]2

2

))
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+ 4

27
iUx3��t3�y

(
−1

6
Cos[	]3 + Cos[	]

(
−1

2
Cos[	]2 − Sin[	]2

2

))

+ 1

27
iUxUy2��t3�y

(
−1

6
Cos[	]3 + Cos[	]

(
−1

2
Cos[	]2 − Sin[	]2

2

))

− 4

27
iUx�t�y3

(
−1

6
Cos[	]3 + Cos[	]

(
−1

2
Cos[	]2 − Sin[	]2

2

))

+ 1

27
iUx2Uy��t3�y

(
−1

6
Sin[	]3 + Sin[	]

(
−1

2
Cos[	]2 − Sin[	]2

2

))

+ 4

27
iUy3��t3�y

(
−1

6
Sin[	]3 + Sin[	]

(
−1

2
Cos[	]2 − Sin[	]2

2

))

− 4

27
iUy�t�y3

(
−1

6
Sin[	]3 + Sin[	]

(
−1

2
Cos[	]2 − Sin[	]2

2

))))
m3 + O[m]4

APPENDIX B: TS EXPANSION OF AMPLIFICATION FACTOR PHASE ERROR
FOR TWSh + �TS ALGORITHMS IN ORDERS OF NON-DIMENSIONAL

WAVE NUMBER FOR 2D PURE ADVECTION

chk=1 = (iCx Cos[	] − iUx�t Cos[	] + iCy Sin[	] − iUy�t Sin[	])m
+ (iCx Cos[	] − iUx�t Cos[	] + iCy Sin[	] − iUy�t Sin[	])m

+
(

−1

2
Ux2��t2 Cos[	]2 − 2

9
Ux2��t2 Cos[	]2

+ 2

9
Uy2��t2 Cos[	]2 − 2

9
Ux2Uy2���t4 Cos[	]2 + 1

9
Uy4���t4 Cos[	]2

−Ux2�t2�Cos[	]2 − 2

3
Ux2Uy2�2�t4�Cos[	]2 + 1

3
Uy4�2�t4�Cos[	]2

−UxUy��t2 Cos[	]Sin[	] − 2UxUy�t2�Cos[	]Sin[	] − 1

2
Uy2��t2 Sin[	]2

+ 2

9
Ux2��t2 Sin[	]2 − 2

9
Uy2��t2 Sin[	]2 + 1

9
Ux4���t4 Sin[	]2

− 2

9
Ux2Uy2���t4 Sin[	]2 −Uy2�t2�Sin[	]2 + 1

3
Ux4�2�t4�Sin[	]2

− 2

3
Ux2Uy2�2�t4�Sin[	]2 − 1

2
(−iCx Cos[	] − iCy Sin[	])2

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:737–783
DOI: 10.1002/fld



776 S. SAHU AND A. J. BAKER

+ 1

81
(−Cos[	]2 − Sin[	]2) + 1

27
Ux2��t2(−Cos[	]2 − Sin[	]2)

+ 1

27
Uy2��t2(−Cos[	]2 − Sin[	]2) − 2

27
Ux2Uy2���t4(−Cos[	]2 − Sin[	]2)

− 2

9
Ux2Uy2�2�t4�(−Cos[	]2 − Sin[	]2) + 1

27
Ux2��t2

(
−1

2
Cos[	]2 − Sin[	]2

)

+ 4

27
Uy2��t2

(
−1

2
Cos[	]2 − Sin[	]2

)
+ 2

27
Ux4���t4

(
−1

2
Cos[	]2 − Sin[	]2

)

+ 2

27
Ux2Uy2���t4

(
−1

2
Cos[	]2 − Sin[	]2

)
− 4

27
Uy4���t4

(
−1

2
Cos[	]2 − Sin[	]2

)

+ 2

9
Ux4�2�t4�

(
−1

2
Cos[	]2 − Sin[	]2

)
− 2

9
Ux2Uy2�2�t4�

(
−1

2
Cos[	]2 − Sin[	]2

)

− 4

9
Uy4�2�t4�

(
−1

2
Cos[	]2 − Sin[	]2

)
+ 4

27
Ux2��t2

(
−Cos[	]2 − Sin[	]2

2

)

+ 1

27
Uy2��t2

(
−Cos[	]2 − Sin[	]2

2

)
− 4

27
Ux4���t4

(
−Cos[	]2 − Sin[	]2

2

)

− 2

27
Ux2Uy2���t4

(
−Cos[	]2 − Sin[	]2

2

)
+ 2

27
Uy4���t4

(
−Cos[	]2 − Sin[	]2

2

)

− 4

9
Ux4�2�t4�

(
−Cos[	]2 − Sin[	]2

2

)
− 2

9
Ux2Uy2�2�t2�

(
−Cos[	]2 − Sin[	]2

2

)

+ 2

9
Uy4�2�t4�

(
−Cos[	]2 − Sin[	]2

2

)
+ 4

27
Ux2��t2

(
−1

2
Cos[	]2 − Sin[	]2

2

)

+ 4

27
Uy2��t2

(
−1

2
Cos[	]2 − Sin[	]2

2

)
+ 8

27
Ux4���t4

(
−1

2
Cos[	]2 − Sin[	]2

2

)

− 2

27
Ux2Uy2���t4

(
−1

2
Cos[	]2 − Sin[	]2

2

)
+ 8

27
Uy4���t4

(
−1

2
Cos[	]2 − Sin[	]2

2

)

+ 8

9
Ux4�2�t4�

(
−1

2
Cos[	]2 − Sin[	]2

2

)
− 2

9
Ux2Uy2�2�t4�

(
−1

2
Cos[	]2 − Sin[	]2

2

)

+ 8

9
Uy4�2�t4�

(
−1

2
Cos[	]2 − Sin[	]2

2

)
+ 1

81
(Cos[	]2 + Sin[	]2)

+ 1

27
Ux4���t4(Cos[	]2 + Sin[	]2) + 1

27
Uy4���t4(Cos[	]2 + Sin[	]2)
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+ 1

9
Ux4�2�t4�(Cos[	]2 + Sin[	]2) + 1

9
Uy4�2�t4�(Cos[	]2 + Sin[	]2)

)
m2

+
(

4

27
iUx�t Cos[	]3 + 1

9
iUx3���t3 Cos[	]3 − 1

9
iUxUy2���t3 Cos[	]3

+ 2

27
iUx3��t3 Cos[	]3 + 2

27
iUxUy2��t3 Cos[	]3 + 4

27
iUy�t Sin[	]3

− 1

9
iUx2Uy���t3 Sin[	]3 + 1

9
iUy3���t3 Sin[	]3

+ 2

27
iUx2Uy��t3 Sin[	]3 − 2

27
iUy3��t3 Sin[	]3

− 1

6
(−iCx Cos[	] − iCy Sin[	])3 − 2

27
iUx�t

(
−1

6
Cos[	]3 − Cos[	]Sin[	]2

)

+ 1

18
iUx3���t3

(
−1

6
Cos[	]3 − Cos[	]Sin[	]2

)

− 1

9
iUxUy2���t3

(
−1

6
Cos[	]3 − Cos[	]Sin[	]2

)

− 1

27
iUx3��t3

(
−1

6
Cos[	]3 − Cos[	]Sin[	]2

)

+ 2

27
iUxUy2��t3

(
−1

6
Cos[	]3 − Cos[	]Sin[	]2

)

− 8

27
iUx�t

(
−1

6
Cos[	]3 − 1

2
Cos[	]Sin[	]2

)

+ 2

9
iUx3���t3

(
−1

6
Cos[	]3 − 1

2
Cos[	]Sin[	]2

)

− 1

9
iUxUy2���t3

(
−1

6
Cos[	]3 − 1

2
Cos[	]Sin[	]2

)

− 4

27
iUx3��t3

(
−1

6
Cos[	]3 − 1

2
Cos[	]Sin[	]2

)

+ 2

27
iUxUy2��t3

(
−1

6
Cos[	]3 − 1

2
Cos[	] Sin[	]2

)

− 2

27
iUy�t

(
−Cos[	]2 Sin[	] − Sin[	]3

6

)
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− 1

9
iUx2Uy���t3

(
−Cos[	]2 Sin[	] − Sin[	]3

6

)

+ 1

18
iUy3���t3

(
−Cos[	]2 Sin[	] − Sin[	]3

6

)

+ 2

27
iUx2Uy��t3

(
−Cos[	]2 Sin[	] − Sin[	]3

6

)
− 1

27
iUy3��t3

×
(

−Cos[	]2 Sin[	] − Sin[	]3
6

)
− 8

27
iUy�t

(
−1

2
Cos[	]2 Sin[	] − Sin[	]3

6

)

− 1

9
iUx2Uy���t3

(
−1

2
Cos[	]2 Sin[	] − Sin[	]3

6

)

+ 2

9
iUy3���t3

(
−1

2
Cos[	]2 Sin[	] − Sin[	]3

6

)

+ 2

27
iUx2Uy��t3

(
−1

2
Cos[	]2 Sin[	] − Sin[	]3

6

)

− 4

27
iUy3��t3

(
−1

2
Cos[	]2 Sin[	] − Sin[	]3

6

)

− 1

27
iUx�t

(
−1

6
Cos[	]3 + Cos[	]

(
−1

2
Cos[	]2 − Sin[	]2

))

− 1

18
iUx3���t3

(
−1

6
Cos[	]3 + Cos[	]

(
−1

2
Cos[	]2 − Sin[	]2

))

− 1

18
iUxUy2���t3

(
−1

6
Cos[	]3 + Cos[	]

(
−1

2
Cos[	]2 − Sin[	]2

))

+ 1

27
iUx3��t3

(
−1

6
Cos[	]3 + Cos[	]

(
−1

2
Cos[	]2 − Sin[	]2

))

+ 1

27
iUxUy2��t3

(
−1

6
Cos[	]3 + Cos[	]

(
−1

2
Cos[	]2 − Sin[	]2

))

− 1

27
iUy�t

(
−1

6
Sin[	]3 + Sin[	]

(
−Cos[	]2 − Sin[	]2

2

))

− 1

18
iUx2Uy���t3

(
−1

6
Sin[	]3 + Sin[	]

(
−Cos[	]2 − Sin[	]2

2

))
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− 1

18
iUy3���t3

(
−1

6
Sin[	]3 + Sin[	]

(
−Cos[	]2 − Sin[	]2

2

))

+ 1

27
iUx2Uy��t3

(
−1

6
Sin[	]3 + Sin[	]

(
−Cos[	]2 − Sin[	]2

2

))

+ 1

27
iUy3��t3

(
−1

6
Sin[	]3 + Sin[	]

(
−Cos[	]2 − Sin[	]2

2

))

− 4

27
iUx�t

(
−1

6
Cos[	]3 + Cos[	]

(
−1

2
Cos[	]2 − Sin[	]2

2

))

− 2

9
iUx3���t3

(
−1

6
Cos[	]3 + Cos[	]

(
−1

2
Cos[	]2 − Sin[	]2

2

))

− 1

18
iUxUy2���t3

(
−1

6
Cos[	]3 + Cos[	]

(
−1

2
Cos[	]2 − Sin[	]2

2

))

+ 4

27
iUx3��t3

(
−1

6
Cos[	]3 + Cos[	]

(
−1

2
Cos[	]2 − Sin[	]2

2

))

+ 1

27
iUxUy2��t3

(
−1

6
Cos[	]3 + Cos[	]

(
−1

2
Cos[	]2 − Sin[	]2

2

))

− 4

27
iUy�t

(
−1

6
Sin[	]3 + Sin[	]

(
−1

2
Cos[	]2 − Sin[	]2

2

))

− 1

18
iUx2Uy���t3

(
−1

6
Sin[	]3 + Sin[	]

(
−1

2
Cos[	]2 − Sin[	]2

2

))

− 2

9
iUy3���t3

(
−1

6
Sin[	]3 + Sin[	]

(
−1

2
Cos[	]2 − Sin[	]2

2

))

+ 1

27
iUx2Uy��t3

(
−1

6
Sin[	]3 + Sin[	]

(
−1

2
Cos[	]2 − Sin[	]2

2

))

+ 4

27
iUy3��t3

(
−1

6
Sin[	]3 + Sin[	]

(
−1

2
Cos[	]2 − Sin[	]2

2

))
+ (−iUx�t Cos[	] − iUy�t Sin[	])

×
(
4Cos[	]2

27
− 1

4
Ux2�2�t2 Cos[	]2 − 4

27
Ux2��t2 Cos[	]2 + 4

27
Uy2��t2 Cos[	]2

− 2

27
Ux2Uy2�2�t4 Cos[	]2 + 1

27
Uy4�2�t4 Cos[	]2 −Ux2��t2�Cos[	]2
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− 4

9
Ux2��t2�Cos[	]2 + 4

9
Uy2��t2�Cos[	]2 − 4

9
Ux2Uy2���t4�Cos[	]2

+ 2

9
Uy4���t4�Cos[	]2 −Ux2�t2�2 Cos[	]2 − 2

3
Ux2Uy2�2�t4�2 Cos[	]2

+ 1

3
Uy4�2�t4�2 Cos[	]2 − 1

2
UxUy�2�t2 Cos[	]Sin[	]

− 2UxUy��t2�Cos[	] Sin[	] − 2UxUy�t2�2 Cos[	]Sin[	] + 4 Sin[	]2
27

− 1

4
Uy2�2�t2 Sin[	]2 + 4

27
Ux2��t2 Sin[	]2 − 4

27
Uy2��t2 Sin[	]2

+ 1

27
Ux4�2�t4 Sin[	]2 − 2

27
Ux2Uy2�2�t4 Sin[	]2 −Uy2��t2�Sin[	]2

+ 4

9
Ux2��t2�Sin[	]2 − 4

9
Uy2��t2� Sin[	]2 + 2

9
Ux4���t4� Sin[	]2

− 4

9
Ux2Uy2���t4� Sin[	]2 −Uy2�t2�2 Sin[	]2 + 1

3
Ux4�2�t4�2 Sin[	]2

− 2

3
Ux2Uy2�2�t4�2 Sin[	]2 + 2

81
Ux2��t2(−Cos[	]2 − Sin[	]2)

+ 2

81
Uy2��t2(−Cos[	]2 − Sin[	]2) − 1

81
Ux4�2�t4(−Cos[	]2 − Sin[	]2)

− 2

81
Ux2Uy2�2�t4(−Cos[	]2 − Sin[	]2) − 1

81
Uy4�2�t4(−Cos[	]2 − Sin[	]2)

+ 2

27
Ux2��t2�(−Cos[	]2 − Sin[	]2) − 2

27
Uy2��t2�(−Cos[	]2 − Sin[	]2)

− 2

27
Ux4���t4�(−Cos[	]2 − Sin[	]2) − 4

27
Ux2Uy2���t4�(−Cos[	]2 − Sin[	]2)

− 2

27
Uy4���t4�(−Cos[	]2 − Sin[	]2) − 1

9
Ux4�2�t4�2(−Cos[	]2 − Sin[	]2)

− 2

9
Ux2Uy2�2�t4�2(−Cos[	]2 − Sin[	]2) − 1

9
Uy4�2�t4�2(−Cos[	]2 − Sin[	]2)

− 4

81

(
−1

2
Cos[	]2 − Sin[	]2

)
+ 2

81
Ux2��t2

(
−1

2
Cos[	]2 − Sin[	]2

)

+ 8

81
Uy2��t2

(
−1

2
Cos[	]2 − Sin[	]2

)
+ 2

81
Ux4�2�t4

(
−1

2
Cos[	]2 − Sin[	]2

)
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− 2

81
Ux2Uy2�2�t4

(
−1

2
Cos[	]2 − Sin[	]2

)
− 4

81
Uy4�2�t4

(
−1

2
Cos[	]2 − Sin[	]2

)

+
(

−1

2
Cos[	]2 − Sin[	]2

)
+ 4

81
Uy4�2�t4

(
−1

2
Cos[	]2 − Sin[	]2

)

+ 2

27
Ux2��t2�

(
−1

2
Cos[	]2 − Sin[	]2

)
+ 8

27
Uy2��t2�

(
−1

2
Cos[	]2 − Sin[	]2

)

+ 4

27
Ux4���t4�

(
−1

2
Cos[	]2 − Sin[	]2

)
− 4

27
Ux2Uy2���t4�

(
−1

2
Cos[	]2 − Sin[	]2

)

− 8

27
Uy4���t4�

(
−1

2
Cos[	]2 − Sin[	]2

)
+ 2

9
Ux4�2�t4�2

(
−1

2
Cos[	]2 − Sin[	]2

)

− 2

9
Ux2Uy2�2�t4�2

(
−1

2
Cos[	]2 − Sin[	]2

)

− 4

9
Uy4�2�t4�2

(
−1

2
Cos[	]2 − Sin[	]2

)
− 4

81

(
−Cos[	]2 − Sin[	]2

2

)

+ 8

81
Ux2��t2

(
−Cos[	]2 − Sin[	]2

2

)
− 2

81
Uy2��t2

(
−Cos[	]2 − Sin[	]2

2

)

− 4

81
Ux4��t4

(
−Cos[	]2 − Sin[	]2

2

)
− 2

81
Ux2Uy2�2�t4

(
−Cos[	]2 − Sin[	]2

2

)

+ 2

81
Uy4�2�t4

(
−Cos[	]2 − Sin[	]2

2

)
+ 8

27
Ux2��t2�

(
−Cos[	]2 − Sin[	]2

2

)

+ 2

27
Uy2��t2�

(
−Cos[	]2 − Sin[	]2

2

)
− 8

27
Ux4���t4�

(
−Cos[	]2 − Sin[	]2

2

)

− 4

27
Ux2Uy2���t4�

(
−Cos[	]2 − Sin[	]2

2

)

+ 4

27
Uy4���t4�

(
−Cos[	]2 − Sin[	]2

2

)
− 4

9
Ux4�2�t4�2

(
−Cos[	]2 − Sin[	]2

2

)

− 2

9
Ux2Uy2�2�t4�2

(
−Cos[	]2 − Sin[	]2

2

)
+ 2

9
Uy4�2�t4�2

(
−Cos[	]2 − Sin[	]2

2

)

− 16

81

(
− 1

2
Cos[	]2 − Sin[	]2

2

)
− 8

81
Ux2��t2

(
−1

2
Cos[	]2 − Sin[	]2

2

)
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+ 8

81
Uy2��t2

(
−1

2
Cos[	]2 − Sin[	]2

2

)
+ 8

81
Ux4�2�t4

(
−1

2
Cos[	]2 − Sin[	]2

2

)

− 2

81
Ux2Uy2�2�t4

(
−1

2
Cos[	]2 − Sin[	]2

2

)

+ 8

81
Uy4�2�t4

(
−1

2
Cos[	]2 − Sin[	]2

2

)
+ 8

27
Ux2��t2�

(
−1

2
Cos[	]2 − Sin[	]2

2

)

+ 8

27
Uy2��t2�

(
−1

2
Cos[	]2 − Sin[	]2

2

)
+ 16

27
Ux4��t4�

(
−1

2
Cos[	]2 − Sin[	]2

2

)

− 4

27
Ux2Uy2���t4�

(
−1

2
Cos[	]2 − Sin[	]2

2

)

+ 16

27
Uy4���t4�

(
−1

2
Cos[	]2 − Sin[	]2

2

)
+ 8

9
Ux4�2�t4�2

×
(

−1

2
Cos[	]2 − Sin[	]2

2

)
− 2

9
Ux2Uy2�2�t4�2

(
−1

2
Cos[	]2 − Sin[	]2

2

)

+ 8

9
Uy4�2�t4�2

(
−1

2
Cos[	]2 − Sin[	]2

2

)
+ 1

81
(Cos[	]2 + Sin[	]2)

))
m3 + O[m]4
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